The importance of spreading charge around in making ions stable

The general rule-of-thumb is that if a charge is very localised (all concentrated on one atom) the ion is much less stable than if the charge is spread out over several atoms.

Applying that to carbocations of various sorts . . .

\[
\begin{align*}
\text{primary ion} & : \delta^+ \text{CH}_3 - \delta^- \text{CH}_2 \\
\text{secondary ion} & : \delta^+ \text{CH}_2 - \delta^- \text{CH}_3 \\
\text{tertiary ion} & : \delta^+ \text{CH}_3 - \delta^- \text{CH}_3
\end{align*}
\]

You will see that the electron pushing effect of the \text{CH}_3 group is placing more and more negative charge on the positive carbon as you go from primary to secondary to tertiary carbocations. The effect of this, of course, is to cut down that positive charge.

At the same time, the region around the various \text{CH}_3 groups is becoming somewhat positive. The net effect, then, is that the positive charge is being spread out over more and more atoms as you go from primary to secondary to tertiary ions.

The more you can spread the charge around, the more stable the ion becomes.